序言
前言
第一部分
第 1 章 專家系統(tǒng) 2
1.1 早期的專家系統(tǒng) 2
1.2 正向推理 4
1.3 逆向推理 5
1.4 謂詞邏輯 6
1.5 專家系統(tǒng)的貢獻和困難 7
1.6 動手實踐 9
1.6.1 簡化的專家系統(tǒng) 10
1.6.2 正向推理 10
1.6.3 逆向推理 11
參考文獻 13
第 2 章 決策樹 14
2.1 分類問題 15
2.2 構造決策樹 16
2.3 ID3 算法 17
2.4 信息熵 19
2.5 基尼不純度 21
2.6 動手實踐 22
2.6.1 計算信息熵 22
2.6.2 構造決策樹 23
2.6.3 使用 scikit-learn軟件包 27
參考文獻 30
第 3 章 神經元和感知機 31
3.1 生物神經元 31
3.2 早期感知機模型 33
3.3 現代的模型 34
3.4 學習模型參數 36
3.4.1 梯度下降法 36
3.4.2 Delta 法則 37
3.5 動手實踐 38
3.5.1 實現感知機模型 38
3.5.2 識別手寫數字 43
參考文獻 48
第 4 章 線性回歸 49
4.1 線性回歸概述 49
4.2 最小二乘法 51
4.3 矩陣形式 52
4.4 一般性的回歸問題 54
4.5 動手實踐 54
4.5.1 實現一維線性回歸 54
4.5.2 實現最小二乘法 56
4.5.3 使用 numpy 軟件包 59
第 5 章 邏輯斯蒂回歸和分類器 64
5.1 分類問題 64
5.2 最大似然估計 66
5.3 交叉熵損失函數 67
5.4 多類別分類 68
5.4.1 多類別邏輯斯蒂回歸 69
5.4.2 歸一化指數函數 70
5.4.3 交叉熵誤差和均方誤差的比較 72
5.5 分類器的決策邊界 73
5.6 支持向量機 75
5.6.1 支持向量 77
5.6.2 拉格朗日乘子法 78
5.6.3 非線性分類與核函數 80
5.7 動手實踐 82
5.7.1 使用邏輯斯蒂回歸 82
5.7.2 觀察分類邊界 83
5.7.3 使用支持向量機 85
參考文獻 87
第二部分
第 6 章 人工神經網絡 90
6.1 異或問題和多層感知機 90
6.2 反向傳播算法 92
6.3 深度神經網絡 94
6.3.1 生物神經機制的啟示 94
6.3.2 解決深度神經網絡面臨的問題 95
6.4 卷積和池化 98
6.4.1 神經連接的局部性 98
6.4.2 平移不變性 99
6.4.3 卷積處理圖像的效果 99
6.4.4 簡單細胞和復雜細胞的仿生學 102
6.5 循環(huán)神經網絡 103
6.6 使用 PyTorch 軟件包 104
6.7 動手實踐 106
6.7.1 識別手寫數字 106
6.7.2 準備訓練數據 109
6.7.3 訓練神經網絡模型 110
6.8 物