Frequently Used Notation Chapter 0 Introduction Chapter 1 Preliminary Material:Extension Theorems,Martingales,and Compactness 1.0 Introduction 1.1 Weak Convergence.Conditional Probability Distributions and Extension Theorems 1.2 Martingales. 1.3 The Space c([0,0);R) 1.4 Martingales and Compactness 1.5 Exercises Chapter 2 Markov Processes,Regularity of Their Sample Paths,and the Wiener Measure. 2.1 Regularity of Paths 2.2MarkOVProcesses andTransitionProbabilities 2.3 Wiener Measure 2.4 Exercises Chapter 3 ParabolicPartialDifferentialEquations 3.1 The Maximum Principle. 3.2 Existence Theorems 3.3 Exercises Chapter 4 The Stochastic Calculus of Di斤usion Theory 4.1 Brownian Morion, 4.2 Equivalence ofCertain Martingales 4.3 It6 Processes and Stochastic Integration 4.4 It’s Formula 4.5 It Processes as Stochastic Integrals 4.6 ExerciSes Chapter 5 Stochastic Dilierential Equations 5.0 Introduction 5.1 Existence and Uniqueness 5.2 On the Lipschitz Condition 5.3Equivalence ofDifferentChoices ofthe SquareRoot 5.4 Exercises Chapter 6 The Martingale Formulation 6.0 Introduction 6.1 Existence 6.2 Uniqueness:Markov Property 6.3 Uniqueness:Some Examples. 6.4 Cameron.Martin.Girsanov Formula 6.5 Uniqueness:Random Time Change 6.6 Uniqueness:Localization. 6.7 Exercises Chapter 7 Uniqueness 7.0 Introduction 7.1 Uniqueness:Local Case 7.2 Uniqueness:Global Case 7.3 ExereiSes Chapter 8 It’S Uniqueness and Uniqueness to the Martingale Problem 8.0 Introduction. 8.I Results ofYamada and Watanabe 8.2 More 0n Itb Uniqueness 8.3 Exercises Chapter 9 Some Estimates on the Transition Probability Functions 9.0 Introduetion 9.1 The Inhomogeneous Case 9.2 The Homogeneous Case Chapter 10 Explosion 10.0Introduction 10.1 Locally Bounded Cocfficients 10.2ConditionsforExplosion andNon-Explosion 10.3 Exercises. Chapter 11 Limit Theorems 11.0 Introduction 11.1 Convergence ofDiffusion Process 11.2 Convergence ofMarkov Chains to Diffusions 11.3ConvergenceofDiffusionProcesses:EllipticCase 11.4 Convergence ofTransition Probability Densities 11.5 ExerciSeS Chapter 12 The Non—Unique Case 12.0 Introduction 12.1 Existence ofMeasurable Choices 12.2 Markov Selections 12.3 Reconstruction ofAll Solutions 12.4 Exercises Appendix A.0 Introduction A.1 L Estimates for Some Singular Integral Operators A.2 Proofofthe Main Estimate A.3 Exercises Bibliographical Remarks Bibliography Index