Gene H.Golub,(1932-2007),美國科學(xué)院、工程院和藝術(shù)科學(xué)院院士,世界著名的數(shù)分析專家,現(xiàn)代矩陣計算的奠基人,生前曾任斯坦福大學(xué)教授。他是矩陣分解算法的主要貢獻(xiàn)者,與William Kahan在1970年給出了奇異值分解(SingularValue Decomposition,SVD)的可行算法,一直沿用至今。他發(fā)起組織了工業(yè)與應(yīng)用數(shù)學(xué)國際會議(Intemational Congress on Industrial and Applied Mathematics,ICIAM)。
圖書目錄
Matrix Multiplication Problems . 1.1 Basic Algorithms and Notation 2 1.2 Exploiting Structure 16 1.3 Block Matrices and Algorithms 24 1.4 Vectorization and Re-Use Issues 34 2 Matrix Analysis 2.1 Basic Ideas from Linear Algebra 48 2.2 Vector Norms 52 2.3 Matrix Norms 54 2.4 Finite Precision Matrix Computations 59 2.5 Orthogonality and the SVD 69 2.6 Projections and the CS Decomposition 75 2.7 The Sensitivity of Square Linear Systems 80 3 General Linear Systems 3.1 Triangular Systems 88 3.2 The LU Factorization 94 3.3 Roundoff Analysis of Gaussian Elimination 104 3.4 Pivoting 109 3.5 Improving and Estimating Accuracy 123 4 Special Linear Systems 4.1 The LDMT and LDLT Factorizations 135 4.2 Positive Definite Systems 140 4.3 Banded Systems 152 4.4 Symmetric Indefinite Systems 161 4.5 Block Systems 174 4.6 Vandermonde Systems and the FFT 183 4.7 Toeplitz and Related Systems 193 5 Orthogonalization and Least Squares 5.1 Householder and Givens Matrices 208 5.2 The QR Factorization 223 5.3 The Full Rank LS Problem 236 5.4 Other Orthogonal Factorizations 248 5.5 The Rank Deficient LS Problem 256 5.6 Weighting and Iterative Improvement 264 5.7 Square and Underdetermined Systems 270 6 Parallel Matrix Computations 6.1 Basic Concepts 276 6.2 Matrix Multiplication 292 6.3 Factorizations 300 7 The Unsymmetric Eigenvalue Problem .. 7.1 Properties and Decompositions 310 7.2 Perturbation Theory 320 7.3 Power Iterations 330 7.4 The Hessenberg and Real Schur Forms 341 7.5 The Practical QR Algorithm 352 7.6 Invariant Subspace Computations 362 7.7 The QZ Method for Ax = λ Bx 375 8 The Symmetric Eigenvalue Problem 8.1 Properties and Decompositions 8.2 Power Iterations 405 8.3 The Symmetric QR Algorithm 414 8.4 Jacobi Methods 426 8.5 Tridiagonal Methods 439 8.6 Computing the SVD 448 8.7 Some Generalized Eigenvalue Problems 461 9 Lanczos Methods 9.1 Derivation and Convergence Properties 471 9.2 Practical Lanczos Procedures 479 9.3 Applications to Ax = b and Least Squares 490 9.4 Arnoldi and Unsymmetric Lanczos 499 10 Iterative Methods for Linear Systems 10.1 The Standard Iterations 509 10.2 The Conjugate Gradient Method 520 10.3 Preconditioned Conjugate Gradients 532 10.4 Other Krylov Subspace Methods 544 11 Functions of Matrices 11.1 Eigenvalue Methods 556 11.2 Approximation Methods 562 11.3 The Matrix Exponential 572 12 Special Topics 12.1 Constrained Least Squares 580 12.2 Subset Selection Using the SVD 590 12.3 Total Least Squares 595 12.4 Computing Subspaces with the SVD 601 12.5 Updating Matrix Factorizations 606 12.6 Modified/Structured Eigenproblems 621 Index 637