Donald E.Knuth(唐納德E.克努特,中文名高德納)算法和程序設(shè)計(jì)技術(shù)的先驅(qū)者、計(jì)算機(jī)排版系統(tǒng)TEX和METAFONT的發(fā)明者,他因這些成就以及大量富于創(chuàng)造力和具有深遠(yuǎn)影響的著作(19部書,1160篇論文)而譽(yù)滿全球.作為斯坦福大學(xué)關(guān)于計(jì)算機(jī)程序設(shè)計(jì)藝術(shù)的榮譽(yù)退休教授,1目前他正投入全部精力完成關(guān)于計(jì)算機(jī)科學(xué)的史詩性的七卷集的工作.這一偉大工程在1962年他還是加州理工學(xué)院的研究生時(shí)就開始了。Knuth教授獲得了許多獎(jiǎng)項(xiàng)和榮譽(yù),包括美國計(jì)算機(jī)協(xié)會(huì)圖靈獎(jiǎng)(ACM Turing Award)、美國前總統(tǒng)卡特授予的科學(xué)金獎(jiǎng)(Medal of Science)、美國數(shù)學(xué)學(xué)會(huì)斯蒂爾獎(jiǎng)(AMS Steele Prize)、以及1996年11月由于發(fā)明先進(jìn)技術(shù)而榮獲的極受尊重的京都獎(jiǎng)(Kyoto Prize)
圖書目錄
Chapter1 Basic Concepts 1.1 Algorithms 1.2 Mathematical Preliminaries 1.2.1 Mathematical Induction 1.2.2 Numbers, Powers, and Logarithms 1.2.3 Sums and Products 1.2.4 Integer Fun tions and Elementary Number Theory 1.2.5 Permutations andcFa torials 1.2.6 Binomial Coefficients 1.2.7 Harmonic Numbers 1.2.8 Fibonacci Numbers 1.2.9 Generating Fun tions 1.2.10 Analysis of anc Algorithm 1.2.11 Asymptotic Representation 1.2.11.1 The O-notation 1.2.11.2 Euler's summation formul 1.2.11.3 Some asymptotic calculations 1.3 MIX 1.3.1 Description of MIX 1.3.2 ThecMIX Assembly Language 1.3.3 Applications to Permutations 1.4 Some Fundamental Programming Techniques 1.4.1 Subroutines 1.4.2 Coroutines 1.4.3 Interpretive Routines 1.4.3.1 A MIX simulator 1.4.3.2 Trace routines 1.4.4 Input and Output 1.4.5 History and Bibliography Chapter2--Information Structures 2.1 Introduction 2.2 Linear Lists 2.2.1 Stacks, Queues, and Deques 2.2.2 Sequential Allocation 2.2.3 Linked Allocation 2.2.4 Circular Lists 2.2.5 Doubly Linked Lists 2.2.6 Arrays and Orthogonal Lists 2.3 Trees 2.3.1 Traversing Binary Trees 2.3.2 Binary Tree Representation of Trees 2.3.3 Other Representations of Trees 2.3.4 Basic Mathematical Properties of Trees 2.3.4.1 Freectrees 2.3.4.2 Orientedctrees 2.3.4.3 The "infinityclemma" 2.3.4.4 Enumeration of trees 2.3.4.5 Pathclength 2.3.4.6 History and bibliography 2.3.5 Lists and Garbage Collection 2.4 Multilinked Structures 2.5 Dynamic Storage Allocation 2.6 History and Bibliography Answers to Exercises Appendix A Tables of Numerical Quantities 1 Fundamental Constants (decimal) 2 Fundamental Constants (octal) 3 Harmonic Numbers, Bernoulli Numbers, FibonaccicNumbers Appendix B Indexcto Notations Index and Glossary