注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)物理學(xué)統(tǒng)計(jì)物理和蛋白質(zhì)折疊講義(英文影印版)

統(tǒng)計(jì)物理和蛋白質(zhì)折疊講義(英文影印版)

統(tǒng)計(jì)物理和蛋白質(zhì)折疊講義(英文影印版)

定 價(jià):¥18.00

作 者: (美)黃克遜 著
出版社: 復(fù)旦大學(xué)出版社
叢編項(xiàng): 研究生前沿教材書系
標(biāo) 簽: 統(tǒng)計(jì)物理學(xué)和熱力學(xué)

ISBN: 9787309052039 出版時(shí)間: 2006-01-01 包裝: 膠版紙
開本: 16開 頁數(shù): 144 字?jǐn)?shù):  

內(nèi)容簡介

  《統(tǒng)計(jì)物理和蛋白質(zhì)折疊講義》是作者于2004年在清華大學(xué)周培源應(yīng)用數(shù)學(xué)中心,給多種學(xué)科背景的學(xué)者講述統(tǒng)計(jì)物理在生物學(xué)科的應(yīng)用的講義基礎(chǔ)上形成的?!督y(tǒng)計(jì)物理和蛋白質(zhì)折疊講義》分16章和一個(gè)附錄。前10章簡潔地歸納了生命科學(xué)中用得著的核心概念,它們分別是熵、麥克斯韋ˉ玻爾茲曼分布、自由能、化學(xué)勢、相變、相變動(dòng)力學(xué)、關(guān)聯(lián)函數(shù)、隨機(jī)過程和朗之萬方程。第11章開始,講述的側(cè)重點(diǎn)逐步轉(zhuǎn)移到生命科學(xué)。其中第11章講述蛋白質(zhì)結(jié)構(gòu)同生命過程的聯(lián)系。第12章講述自組裝的生物學(xué)過程,第13章介紹蛋白質(zhì)折疊的動(dòng)力學(xué)機(jī)理,第14章講述蛋白質(zhì)折疊的指數(shù)律,第15章闡述自回避行走和湍流,第16章作為全書的結(jié)尾,提出了控制蛋白質(zhì)一級(jí)、二級(jí)、三級(jí)結(jié)構(gòu)的機(jī)制的假設(shè),附錄中介紹蛋白質(zhì)分子中能量級(jí)聯(lián)機(jī)制的物理學(xué)模型?!督y(tǒng)計(jì)物理和蛋白質(zhì)折疊講義》以簡潔的語言,精辟地提出了可能的研究方向,對(duì)于從事生命科學(xué)研究的多學(xué)科讀者都具有指導(dǎo)意義。

作者簡介

  Kerson Huang(黃克遜),作者系美國麻省理工學(xué)院(Massachusetts Institute of Technology)榮譽(yù)退休教授。美籍華裔科學(xué)家。1928年出生于中國南寧市,先后于1950年和1953年獲得麻省理工學(xué)院物理學(xué)學(xué)士和物理學(xué)博士學(xué)位,之后在普林斯頓大學(xué)(Princeton University)作短暫博士后研究,1957年回到麻省理工學(xué)院從事熱力學(xué)和統(tǒng)計(jì)力學(xué)的教學(xué)和研究工作。他的Statistical Mechanics(Wiley,New York)多次重版,對(duì)大學(xué)物理教學(xué)產(chǎn)生過廣泛影響。此外還有Introduction to Statistical Physics(Taylor & Francis,London)等著作出版。

圖書目錄

Contents
Foreword
Introduction
1. Entropy
 1.1 Statistical Ensembles
 1.2 Microcanonical Ensemble and Entropy
 1.3 Thermodynamics
 1.4 Principle of Maximum Entropy
 1.5 Example: Defects in Solid
2. Maxwell-Boltzmann Distribution
 2.1 Classical Gas of Atoms
 2.2 The Most Probable Distribution
 2.3 The Distribution Function
 2.4 Thermodynamic Properties
3. Free Energy
 3.1 Canonical Ensemble
 3.2 Energy Fluctuations
 3.3 The Free Energy
 3.4 Maxwell's Relations
 3.5 Example: Unwinding of DNA
4. Chemical Potential
 4.1 Changing the Particle Number
 4.2 Grand Canonical Ensemble
 4.3 Thermodynamics
 4.4 Critical Fluctuations
 4.5 Example: Ideal Gas
5. Phase Transitions
 5.1 First-Order Phase Transitions
 5.2 Second-Order Phase Transitions
 5.3 Van der Waals Equation of State
 5.4 Maxwell Construction
6. Kinetics of Phase Transitions
 6.1 Nucleation and Spinodal Decomposition
 6.2 The Freezing of Water
7. The Order Parameter
 7 1 Ginsburg-Landau Theory
 7.2 Second-Order Phase Transition
 7.3 First-Order Phase Transition
 7.4 Cahn-Hilliard Equation
8. Correlation Function
 8.1 Correlation Length
 8.2 Large-Distance Correlations
 8.3 Universality Classes
 8.4 Compactness Index
 8.5 Scaling Properties
9. Stochastic Processes
 9.1 Brownian Motion
 9.2 Random Walk
 9.3 Diffusion
 9.4 Central Limit Theorem
 9.5 Diffusion Equation
10. Langevin Equation
 10.1 The Equation
 10.2 Solution
 10.3 Fluctuation-Dissipation Theorem
 10.4 Power Spectrum and Correlation
 10.5 Causality
 10.6 Energy Balance
11. The Life Process
 11.1 Life
 11.2 Cell Structure
 11.3 Molecular Interactions
 11.4 Primary Protein Structure
 11.5 Secondary Protein Structure
 11.6 Tertiary Protein Structure
 11.7 Denatured State of Protein
12. Self-Assembly
 12.1 Hydrophobic Effect
 12.2 Micelles and Bilayers
 12.3 Cell Membrane
 12.4 Kinetics of Self-Assembly
 12.5 Kinetic Arrest
13. Kinetics of Protein Folding
 13.1 The Statistical View
 13.2 Denatured State
 13.3 Molten Globule
 13.4 Folding Funnel
 13.5 Convergent Evolution
14. Power Laws in Protein Folding
 14.1 The Universal Range
 14.2 Collapse and Annealing
 14.3 Self-Avoiding Walk (SAW)
15. Self-Avoiding Walk and Turbulence
 15.1 Kolmogorov's Law
 15.2 Vortex Model
 15.3 Quantum Turbulence
 15.4 Convergent Evolution in Turbulence
16. Convergent Evolution in Protein Folding
 16.1 Mechanism of Convergent Evolution
 16.2 Energy Cascade in Turbulence
 16.3 Energy Cascade in the Polymer Chain
 16.4 Energy Cascade in the Molten Globule
 16.5 Secondary and Tertiary Structures
A. Model of Energy Cascade in a Protein Molecule
 A.1 Brownian Motion of a Forced Harmonic Oscillator
 A.2 Coupled Oscillators
  A.2.1 Equations of Motion
  A.2.2 Energy Balance
  A.2.3 Fluctuation-Dissipation Theorem
  A.2.4 Perturbation Theory
  A.2.5 Weak-Damping Approximation
 A.3 Model of Protein Dynamics
 A.4 Fluctuation-Dissipation Theorem
 A.5 The Cascade Time
 A.6 Numerical Example
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) www.autoforsalebyowners.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)