注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)復(fù)分析可視化方法(英文版)

復(fù)分析可視化方法(英文版)

復(fù)分析可視化方法(英文版)

定 價(jià):¥79.00

作 者: (美)尼達(dá)姆 著
出版社: 人民郵電出版社
叢編項(xiàng):
標(biāo) 簽: 計(jì)算機(jī)

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787115155160 出版時(shí)間: 2007-02-01 包裝: 膠版紙
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 0頁(yè) 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書(shū)是復(fù)分析領(lǐng)域近年來(lái)較有影響的一本著作。作者用豐富的圖例展示各種概念、定理和證明思路,十分便于讀者理解,充分揭示了復(fù)分析的數(shù)學(xué)之美。書(shū)中講述的內(nèi)容有幾何、復(fù)變函數(shù)變換、默比烏斯變換、微分、非歐幾何、復(fù)積分、柯西公式、向量場(chǎng)、復(fù)積分、調(diào)和函數(shù)等。.本書(shū)可作為大學(xué)本科、研究生的復(fù)分析課程教材或參考書(shū)。.“……總的說(shuō)來(lái),本書(shū)確實(shí)體現(xiàn)了近幾十年數(shù)學(xué)教材的一個(gè)發(fā)展趨勢(shì)。把最新的成就,用淺顯的方法教給低年級(jí)學(xué)生。……”——齊民友(著名數(shù)學(xué)家,原武漢大學(xué)校長(zhǎng)).“《復(fù)分析:可視化方法》對(duì)我來(lái)說(shuō)首先是一個(gè)欣喜,隨后便成為深得我心的一本書(shū)。Tristan Needham 運(yùn)用創(chuàng)新、獨(dú)特的幾何觀點(diǎn),揭示復(fù)分析之美中許多令人吃驚的、未被人們認(rèn)識(shí)到的方面。”——Roger Penrose(英國(guó)大物理學(xué)家).“如果你一年之內(nèi)只能買(mǎi)一本數(shù)學(xué)書(shū)的話,那就買(mǎi)這一本吧。”——Mathematical Gazette(數(shù)學(xué)公報(bào)).本書(shū)是復(fù)分析領(lǐng)域的一部名著,開(kāi)創(chuàng)了數(shù)學(xué)領(lǐng)域的可視化潮流,自首次出版以來(lái),已重印了十多次,深受世界讀者好評(píng)。作者用真正不同尋常和獨(dú)具創(chuàng)造性的視角來(lái)闡述復(fù)分析這一經(jīng)典學(xué)科,通過(guò)大量的圖示使原本比較抽象的數(shù)學(xué)概念,變得直觀易懂,讀者在透徹理解理論的同時(shí),還能充分領(lǐng)略數(shù)學(xué)之美。.Tristan Needham舊金山大學(xué)數(shù)學(xué)系教授,理學(xué)院副院長(zhǎng)。 牛津大學(xué)博士,導(dǎo)師為Roger Penrose(與霍金齊名的英國(guó)物理學(xué)家)。 因本書(shū)被美國(guó)數(shù)學(xué)會(huì)授予Carl B. Allendoerfer獎(jiǎng)。他的研究領(lǐng)域包括幾何、復(fù)分析、數(shù)學(xué)史、廣義相對(duì)論。...

作者簡(jiǎn)介

  Tristan Needham,舊金山大學(xué)教授系教授,理學(xué)院副院長(zhǎng)。牛津大學(xué)博士,導(dǎo)師為Roger Penrose(與霍金齊名的英國(guó)物理學(xué)家)。因本書(shū)被美國(guó)數(shù)學(xué)會(huì)授予Carl B.Allendoerfer獎(jiǎng)。他的研究領(lǐng)域包括幾何、復(fù)分析、數(shù)學(xué)史、廣義相對(duì)論。

圖書(shū)目錄

1 Geometry and CompleX ArIthmetIc
?、? IntroductIon 
 Ⅱ Euler's Formula 
 Ⅲ Some ApplIcatIons 
?、? TransformatIons and EuclIdean Geometry* 
?、? EXercIses 
2 CompleX FunctIons as TransformatIons 
Ⅰ IntroductIon 
 Ⅱ PolynomIals 
?、? Power SerIes 
 Ⅳ The EXponentIal FunctIon 
?、? CosIne and SIne 
?、? MultIfunctIons 
?、鳌he LogarIthm FunctIon 
?、VeragIng oVer CIrcles* 
?、? EXercIses 
3 M?bIus TransformatIons and InVersIon 
 Ⅰ IntroductIon 
 Ⅱ InVersIon 
?、? Three Illustrative ApplIcatIons of InVersIon 
?、? The RIemann Sphere 
?、? M?bIus TransformatIons: BasIc Results 
?、? M?bIus TransformatIons as MatrIces* 
?、鳌isualIzatIon and ClassIfIcatIon*
?、ecomposItIon Into 2 or 4 ReflectIons* 
?、? AutomorphIsms of the UnIt DIsc* 
?、? EXercIses 
4 DIfferentIatIon: The AmplItwIst Concept 
 Ⅰ IntroductIon 
?、? A PuzzlIng Phenomenon 
?、? Local DescrIptIon of MappIngs In the Plane 
?、? The CompleX Derivative as AmplItwIst 
?、? Some SImple EXamples 
 Ⅵ Conformal = AnalytIc 
?、鳌rItIcal PoInts 
 Ⅷ The Cauchy-RIemann EquatIons 
?、? EXercIses 
5 Further Geometry of DIfferentIatIon
?、? Cauchy-RIemann ReVealed 
 Ⅱ An IntImatIon of RIgIdIty 
?、? Visual DIfferentIatIon of log(z) 
?、? Rules of DIfferentIatIon 
 Ⅴ PolynomIals, Power SerIes, and RatIonal Func-tIons 
?、? Visual DIfferentIatIon of the Power FunctIon 
?、鳌isual DIfferentIatIon of eXp(z) 231
?、eometrIc SolutIon of E'= E  
?、? An ApplIcatIon of HIgher Derivatives: CurVa-ture* 
 Ⅹ CelestIal MechanIcs* 
?、? AnalytIc ContInuatIon* 
 Ⅻ EXercIses 
6 Non-EuclIdean Geometry* 
?、? IntroductIon 
?、? SpherIcal Geometry 
?、? HyperbolIc Geometry 
?、? EXercIses 
7 WIndIng Numbers and Topology
 Ⅰ WIndIng Number
?、? Hopf's Degree Theorem 
?、? PolynomIals and the Argument PrIncIple 
 Ⅳ A TopologIcal Argument PrIncIple* 
?、? Rouché's Theorem 
 Ⅵ MaXIma and MInIma 
?、鳌he Schwarz-PIck Lemma* 
?、he GeneralIzed Argument PrIncIple 
?、? EXercIses 
8 CompleX IntegratIon: Cauchy's Theorem 
?、騨troductIon 
 Ⅱ The Real Integral 
?、? The CompleX Integral 
?、? CompleX InVersIon 
?、? ConjugatIon 
?、? Power FunctIons 
?、鳌he EXponentIal MappIng 
?、he Fundamental Theorem 
?、? ParametrIc EValuatIon 
 Ⅹ Cauchy's Theorem 
?、? The General Cauchy Theorem 
?、he General Formula of Contour IntegratIon
?、XercIses 
9 Cauchy's Formula and Its ApplIcatIons 
?、? Cauchy's Formula 
 Ⅱ InfInIte DIfferentIabIlIty and Taylor SerIes 
?、? Calculus of ResIdues 
 Ⅳ Annular Laurent SerIes 
?、? EXercIses 
10 Vector FIelds: PhysIcs and Topology 
?、? Vector FIelds 
?、? WIndIng Numbers and Vector FIelds* 
?、? Flows on Closed Surfaces* 
?、? EXercIses 
11 Vector FIelds and CompleX IntegratIon 
?、? FluX and Work 
 Ⅱ CompleX IntegratIon In Terms of Vector FIelds
?、? The CompleX PotentIal 
?、? EXercIses 
12 Flows and HarmonIc FunctIons 
?、? HarmonIc Duals 
 Ⅱ Conformal I nVarIance 
?、? A Powerful ComputatIonal Tool 
?、? The CompleX CurVature ReVIsIted* 
 Ⅴ Flow Around an Obstacle 
?、? The PhysIcs of RIemann's MappIng Theorem
 Ⅶ Dirichlet's Problem 
?、xercIses 
References 
IndeX

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) www.autoforsalebyowners.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)