第一章 引論
1.1 數(shù)學與計算
1.2 計算機代數(shù)簡介
1.3 理念、算法與實施
1.4 計算機代數(shù)系統(tǒng)
1.5 問題及應用舉例
1.6 代數(shù)計算演示
習題
第二章 數(shù)據(jù)表示與基本運算
2.1 大整數(shù)的表示
2.2 整數(shù)運算
2.3 多項式及其表示
2.4 多項式運算
2.5 理想和數(shù)域
習題
第三章 結式與子結式
3.1 一元與二元結式
3.2 Macaulay多元結式
3.3 子結式與Habicht定理
3.5 子結式鏈定理
習題
第四章 模方法與最大公因子
4.1 多項式余式序列與最大公因子
4.2 子結式多項式余式序列
4.3 同態(tài)象與模方法
4.4 中國剩余定理
4.5 一元多項式的最大公因子
4.6 多元多項式的最大公因子
習題
第五章 P進方法與因子分解
5.1 p進表示與理想進表示
5.2 Newton迭代
5.3 無平方因子分解
5.4 有限域上的因子分解
5.5 整數(shù)環(huán)上的因子分解
5.6 多元多項式的因子分解
5.7 EZ-gcd算法
習題
第六章 特征列方法
第七章 Grobnet算法
第八章 實閉域上的題詞表示
附錄A 計算機代數(shù)系統(tǒng)
參考文獻
索引